Online Timing Correlation of Streaming Data with Uncertain Timestamps
نویسندگان
چکیده
منابع مشابه
Fuzzy Data Envelopment Analysis for Classification of Streaming Data
The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...
متن کاملOnline Prediction of Streaming Sensor Data
This paper presents a real-time system for online prediction in large sensor networks, with two components. The goal of our system is to predict the value of each sensor with a given horizon. Due to the large number of sensors (around 2400), we first aggregate sensors into clusters. Afterwards, associated with each cluster, we train a predictive model. The first step is achieved with an online ...
متن کاملA Framework of Online Learning with Imbalanced Streaming Data
A challenge for mining large-scale streaming data overlooked by most existing studies on online learning is the skewdistribution of examples over different classes. Many previous works have considered cost-sensitive approaches in an online setting for streaming data, where fixed costs are assigned to different classes, or ad-hoc costs are adapted based on the distribution of data received so fa...
متن کاملFuzzy Data Envelopment Analysis for Classification of Streaming Data
The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...
متن کاملOnline Cluster Validity Indices for Streaming Data
Cluster analysis is used to explore structure in unlabeled data sets in a wide range of applications. An important part of cluster analysis is validating the quality of computationally obtained clusters. A large number of different internal indices have been developed for validation in the offline setting. However, this concept has not been extended to the online setting. A key challenge is to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2009
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.e92.d.1260